[1] Freiberg MS, Chang CCH, Kuller LH, et al. HIV infection and the
risk of acute myocardial infarction[J]. JAMA Intern Med, 2013,
173(8):614-622.
[2] Appay V, Sauce D. Immune activation and inflammation in HIV-
1 infection: causes and consequences[J]. J Pathol, 2008,
214(2):231-241.
[3] Serrano-Villar S, Gutiérrez C, Vallejo A, et al. The CD4/CD8 ratio
in HIV-infected subjects is independently associated with T-cell
activation despite long-term viral suppression[J]. J Infect,
2013, 66(1):57-66.
[4] Tinago W, Coghlan E, Macken A, et al. Clinical, immunological
and treatment-related factors associated with normalised CD4+/
CD8+ T-cell ratio: effect of na?ve and memory T-cell subsets[J].
PLoS One, 2014, 9(5):e97011.
[5] Buggert M, Frederiksen J, Noyan K, et al. Multiparametric
bioinformatics distinguish the CD4/CD8 ratio as a suitable
laboratory predictor of combined T cell pathogenesis in HIV
infection[J]. J Immunol, 2014, 192(5):2099-2108.
[6] Serrano-Villar S, Sainz T, Lee SA, et al. HIV-infected individuals
with low CD4/CD8 ratio despite effective antiretroviral therapy
exhibit altered T cell subsets, heightened CD8+ T cell activation,
and increased risk of non-AIDS morbidity and mortality[J].
PLoS Pathog, 2014, 10(5):e1004078.
[7] Mussini C, Lorenzini P, Cozzi-Lepri A, et al. CD4/CD8 ratio
normalisation and non-AIDS-related events in individuals
with HIV who achieve viral load suppression with antiretroviral
therapy: an observational cohort study[J]. Lancet HIV, 2015,2(3):e98-e106.
[8] Shenoda BB, Ajit SK. Modulation of immune responses by
exosomes derived from antigen-presenting cells[J]. Clin Med
Insights Pathol, 2016, 9(Suppl 1):S1-S8.
[9] Chaput N, Clotilde Théry. Exosomes: immune properties and
potential clinical implementations[J]. Semin Immunopathol,
2011, 33(5):419-440.
[10] Skog J, Würdinger T, Van Rijn S, et al. Glioblastoma microvesicles
transport RNA and proteins that promote tumour growth and provide
diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12):1470-
1476.
[11] Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors
of immune responses[J]. Nat Rev Immunol, 2009, 9(8):581-
593.
[12] Meckes DG, Raabtraub N. Microvesicles and viral infection[J].
J Virol, 2011, 85(25):12844-12854.
[13] Carvalho JVD, Castro ROD, Silva EZMD, et al. Nef neutralizes the
ability of exosomes from CD4+ T cells to act as decoys during HIV-
1 infection[J]. PLoS One, 2014, 9(11):e113691.
[14] Duette G, Pereyra GP, Rubione J, et al. Induction of HIF-1α by
HIV-1 infection in CD4+ T cells promotes viral replication and
drives extracellular vesicle-mediated inflammation[J]. MBio,
2018, 9(5):pii:e00757-18.
[15] Giri PK, Schorey JS. Exosomes derived from M. Bovis BCG infected
macrophages activate antigen-specific CD4+ and CD8+ T cells in
vitro and in vivo[J]. PLoS One, 2008, 3(6):e2461.
[16] Lugini L, Cecchetti S, Huber V, et al. Immune surveillance
properties of human NK cell-derived exosomes[J]. J Immunol,
2012, 189(6):2833-2842.
[17] Xie Y, Zhang H, Li W, et al. Dendritic cells recruit T cell exosomes
via exosomal LFA-1 leading to inhibition of CD8+ CTL responses
through downregulation of peptide/MHC class I and Fas ligandmediated
cytotoxicity[J]. J Immunol, 2010, 185(9):5268-5278.
[18] 中华医学会感染病学分会艾滋病丙型肝炎学组,中国疾病预
防与控制中心. 中国艾滋病诊疗指南(2018 版)[J]. 传染
病信息,2018,31(6):481-499,504.
[19] Gang C, Xiaowei X, Wei G, et al. Exosomal PD-L1 contributes to
immunosuppression and is associated with anti-PD-1 response[J].
Nature, 2018, 560(7718):382-386.
[20] Sonja L, Theofanis F, Theresa L, et al. Suppression of lymphocyte
functions by plasma exosomes correlates with disease activity in
patients with head and neck cancer[J]. Clin Cancer Res, 2017,
23(16):4843-4854.
[21] Okoye I, Coomes S, Pelly V, et al. MicroRNA-containing
T-regulatory-cell-derived exosomes suppress pathogenic T helper
1 cells[J]. Immunity, 2014, 41(1):89-103.
[22] Tung SL, Boardman DA, Sen M, et al. Regulatory T cell-derived
extracellular vesicles modify dendritic cell function[J]. Sci Rep,
2018, 8(1):6065.