|本期目录/Table of Contents|

[1]崔 晓,蔡 军.肠道菌群与慢性心力衰竭相关性研究进展[J].传染病信息,2018,04:306-311.
 CUI Xiao,CAI Jun*.Research progress in the correlation between gut microbiota and chronic heart failure[J].Infectious Disease Information,2018,04:306-311.
点击复制

肠道菌群与慢性心力衰竭相关性研究进展(PDF)

《传染病信息》[ISSN:1007-8134/CN:11-3886/R]

期数:
2018年04期
页码:
306-311
栏目:
导向与述评
出版日期:
2018-08-30

文章信息/Info

Title:
Research progress in the correlation between gut microbiota and chronic heart failure
作者:
崔 晓蔡 军
100037,中国医学科学院 北京协和医学院国家心血管病中心阜外医院高血压中心(崔晓、蔡军)
Author(s):
CUI Xiao CAI Jun*
Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, China
关键词:
慢性心力衰竭肠道菌群肠道细菌相关代谢物宏基因组学
Keywords:
chronic heart failure gut microbiota gut microbial related metabolites metagenomics
分类号:
R511.7
DOI:
10.3969/j.issn.1007-8134.2018.04.003
文献标识码:
A
摘要:
近年来,越来越多的研究证据提示肠道菌群与慢性心力衰竭病理生理过程可能存在相互作用。本文主要从肠道病原菌及内毒素移位、肠道细菌相关代谢产物、利用基因测序技术揭示肠道菌群紊乱以及影响肠道菌群的干预手段4 个角度综述肠道菌群与慢性心力衰竭的相关研究进展,具体包括如下几个方面。首先,慢性心力衰竭患者可能存在“肠道内病原菌增加- 肠壁血流减低、形态改变并通透性增加- 内毒素移位并刺激机体炎症反应- 患者死亡风险增加”这样一病理过程。其次,肠道细菌相关代谢物如氧化三甲胺、硫酸对甲酚、硫酸吲哚酚、氨以及胆汁酸与慢性心力衰竭存在关系。再次,近两年基于16S rDNA 及宏基因组测序技术的研究更为直接与全面地解释了慢性心力衰竭患者存在显著的肠道菌群紊乱。最后,肠道菌群的干预手段如抗生素、益生菌以及饮食,可能影响慢性心力衰竭的严重程度或与其预后存在关联。
Abstract:
In recent years, emerging evidences have suggested an interaction between gut microbiota and the pathophysiology of chronic heart failure. In the review, we summarize the advances in the researches regarding gut microbiota and chronic heart failure from aspects including the translocation of gut pathogens and endotoxin, gut microbial related metabolite, gut microbiota dysbiosis revealed by gene sequencing and intervention approaches that might influence gut microbiota. Firstly, there exists an increase of gut pathogens, intestinal permeability and levels of endotoxin and systemic inflammation in the chronic heart failure. Secondly, microbial related metabolites including trimethylamine oxide, p-cresol sulfate, indoxyl sulfate, ammonia and bile acid are associated with chronic heart failure. Thirdly, in the last two years, gene sequencing based approaches including 16S rDNA sequencing and metagenomics further reveal the dysbiosis of gut microbiota more directly and comprehensively. Finally, some intervention approaches such as antibiotics, probiotics and diet might influence the severity and prognosis of chronic heart failure.

参考文献/References


[1] Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2016, 37:2129-2200.
[2] Damman K, Testani JM. The kidney in heart failure: an update[J]. Eur Heart J, 2015, 36(23):1437-1444.
[3] Rogler G, Rosano G. The heart and the gut[J]. Eur Heart J, 2014, 35(7):426-430.
[4] Lynch SV, Pedersen O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375(24):2369-2379.
[5] Sandek A, Swidsinski A, Schroedl W, et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia[J]. J Am Coll Cardiol, 2014, 64(11):1092-1102.
[6] Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure[J]. JACC Heart Fail, 2016, 4:220-227.
[7] Mamic P, Heidenreich PA, Hedlin H, et al. Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant clostridium difficile infection rates and inhospital mortality[J]. J Card Fail, 2016, 22(11):891-900.
[8] Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure[J]. J Am Coll Cardiol, 2007, 50(16):1561-1569.
[9] Schaufelberger M, Ekman I, Bjornsson E, et al. Intestinal paracellular permeability is not affected in chronic congestive heart failure[J]. Eur J Heart Fail, 2007, 9(6-7):574-578.
[10] Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure[J]. N Engl J Med, 1990, 323(4):236-241.
[11] Anker SD, Von Haehling S. Inflammatory mediators in chronic heart failure: an overview[J]. Heart, 2004, 90(4):464-470.
[12] Rauchhaus M, Doehner W, Francis DP, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure[J]. Circulation, 2000, 102(25):3060-3067.
[13] Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study[J]. Lancet, 1999, 353(9167):1838-1842.
[14] Ebner N, Foldes G, Schomburg L, et al. Lipopolysaccharide responsiveness is an independent predictor of death in patients with chronic heart failure[J]. J Mol Cell Cardiol, 2015, 87:48-53.
[15] Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13(5):321-335.
[16] Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1):111-124.
[17] Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5):576-585.
[18] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341):57-63.
[19] Tang WH, Wang Z, Levison BS, et al. Intestinal microbial 传染病信息 2018 年8 月30 日 第31 卷 第4 期 Infect Dis Info, Vol. 31, No. 4, August 30, 2018 ·311· metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med, 2013, 368(17):1575-1584.
[20] Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-Noxide in patients with heart failure: refining the gut hypothesis[J]. J Am Coll Cardiol, 2014, 64(18):1908-1914.
[21] Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure[J]. Circ Heart Fail, 2016, 9(1):e002314.
[22] Aronov PA, Luo FJ, Plummer NS, et al. Colonic contribution to uremic solutes[J]. J Am Soc Nephrol, 2011, 22(9):1769-1796.
[23] Tanaka H, Sirich TL, Meyer TW. Uremic solutes produced by colon microbes[J]. Blood Purif, 2015, 40(4):306-311.
[24] Preidis GA, Ajami NJ, Wong MC, et al. Microbial-derived metabolites reflect an altered intestinal microbiota during catchup growth in undernourished neonatal mice[J]. J Nutr, 2016, 146(5):940-948.
[25] Wang CH, Cheng ML, Liu MH, et al. Increased p-cresyl sulfate level is independently associated with poor outcomes in patients with heart failure[J]. Heart Vessels, 2016, 31(7):1100-1108.
[26] Devlin AS, Marcobal A, Dodd D, et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota[J]. Cell Host Microbe, 2016, 20(6):709-715.
[27] Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study[J]. N Engl J Med, 2006, 355(3):260-269.
[28] Segers VF, De Keulenaer GW. Pathophysiology of diastolic dysfunction in chronic heart failure[J]. Future Cardiol, 2013, 9(5):711-720.
[29] Sato B, Yoshikawa D, Ishii H, et al. Relation of plasma indoxyl sulfate levels and estimated glomerular filtration rate to left ventricular diastolic dysfunction[J]. Am J Cardiol, 2013, 111(5):712-716.
[30] Shimazu S, Hirashiki A, Okumura T, et al. Association between indoxyl sulfate and cardiac dysfunction and prognosis in patients with dilated cardiomyopathy[J]. Circ J, 2013, 77(2):390-396.
[31] Mitch WE. Effects of intestinal flora on nitrogen metabolism in patients with chronic renal failure[J]. Am J Clin Nutr, 1978, 31(9):1594-1600.
[32] Heo J, Seo M, Park H, et al. Gut microbiota modulated by probiotics and garcinia cambogia extract correlate with weight gain and adipocyte sizes in high fat-fed mice[J]. Sci Rep, 2016, 6:33566.
[33] Frea S, Bovolo V, Pidello S, et al. Clinical and prognostic role of ammonia in advanced decompensated heart failure. The cardioabdominal syndrome?[J]. Int J Cardiol, 2015, 195:553-560.
[34] Monte MJ, Marin JJ, Antelo A, et al. Bile acids: chemistry, physiology, and pathophysiology[J]. World J Gastroenterol, 2009, 15(7):804-816.
[35] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res, 2006, 47(2):241-259.
[36] Jarocki P, Podlesny M, Glibowski P, et al. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium[J]. PLoS One, 2014, 9(12): e114379.
[37] Ridlon JM, Kang DJ, Hylemon PB. Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271[J]. Anaerobe, 2010, 16(2):137-146.
[38] Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions[J]. Diabetol Metab Syndr, 2017, 9:102.
[39] Mayerhofer CCK, Ueland T, Broch K, et al. Increased secondary/ primary bile acid ratio in chronic heart failure[J]. J Card Fail, 2017, 23(9):666-671.
[40] Von Haehling S, Schefold JC, Jankowska EA, et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial[J]. J Am Coll Cardiol, 2012, 59(6):585-592.
[41] Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project[J]. Nature, 2007, 449(7164):804-810.
[42] Cui X, Ye L, Li J, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients [J]. Sci Rep, 2018, 8(1):635.
[43] Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure[J]. PLoS One, 2017, 12(3):e0174099.
[44] Katsimichas T, Ohtani T, Motooka D, et al. Non-Ischemic heart failure with reduced ejection fraction is associated with altered intestinal microbiota[J]. Circ J, 2018, 82(6):1640-1650.
[45] Serpa Neto A, Bianco Rossi FM, Dal Moro Amarante R, et al. Effect of weight loss after Roux-en-Y gastric bypass, on renal function and blood pressure in morbidly obese patients[J]. J Nephrol, 2009, 22(5):637-646.
[46] Jensen AB, Ajslev TA, Brunak S, et al. Long-term risk of cardiovascular and cerebrovascular disease after removal of the colonic microbiota by colectomy: a cohort study based on the Danish National Patient Register from 1996 to 2014[J]. BMJ Open, 2015, 5(12):e008702.
[47] Schubert AM, Sinani H, Schloss PD. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile[J]. MBio, 2015, 6(4):e00974.
[48] Mikkelsen KH, Frost M, Bahl MI, et al. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism[J]. PLoS One, 2015, 10(11):e0142352.
[49] Macfarlane S. Antibiotic treatments and microbes in the gut[J]. Environ Microbiol, 2014, 16(4):919-924.
[50] Schuetz P, Kutz A, Grolimund E, et al. Excluding infection through procalcitonin testing improves outcomes of congestive heart failure patients presenting with acute respiratory symptoms: results from the randomized ProHOSP trial[J]. Int J Cardiol, 2014, 175(3): 464-472.
[51] Gao Z, Guo B, Gao R, et al. Probiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cance[r J]. Mol Med Rep, 2015, 12(4):6119-6127.
[52] Shadnoush M, Hosseini RS, Khalilnezhad A, et al. Effects of probiotics on gut microbiota in patients with inflammatory bowel disease: a double-blind, placebo-controlled clinical trial[J]. Korean J Gastroenterol, 2015, 65(4):215-221.
[53] Didari T, Mozaffari S, Nikfar S, et al. Effectiveness of probiotics in irritable bowel syndrome: updated systematic review with metaanalysis [J]. World J Gastroenterol, 2015, 21(10):3072-3084.
[54] Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J]. Circ Heart Fail, 2014, 7(3):491-499.
[55] Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice [J]. Circulation, 2017, 135(10):964-977.

备注/Memo

备注/Memo:
[ 基金项目] 国家自然科学基金重点项目(81630014) [ 作者单位 ] 100037,中国医学科学院 北京协和医学院国家心血管病中心阜外医院高血压中心(崔晓、蔡军) [ 通信作者] 蔡军,E-mail: caijun@fuwaihospital.org
更新日期/Last Update: 2018-09-08