|本期目录/Table of Contents|

[1]李 静,周明菊,张和倩,等.CD4+ 细胞毒性T 细胞在临床HIV 感染中的研究进展[J].传染病信息,2018,06:516-520540.
 LI Jing,ZHOU Ming-ju,ZHANG He-qian,et al.Progress on the role of CD4+ cytotoxic T cells during clinical HIV infection[J].Infectious Disease Information,2018,06:516-520540.
点击复制

CD4+ 细胞毒性T 细胞在临床HIV 感染中的研究进展(PDF)

《传染病信息》[ISSN:1007-8134/CN:11-3886/R]

期数:
2018年06期
页码:
516-520540
栏目:
导向与述评
出版日期:
2018-12-30

文章信息/Info

Title:
Progress on the role of CD4+ cytotoxic T cells during clinical HIV infection
作者:
李 静周明菊张和倩宋锦文张 超王福生
233000,蚌埠医学院临床医学系(李静、王福生); 100039 北京,中国人民解放军总医院第五医学中心感染性疾病诊 疗与研究中心(周明菊、张和倩、宋锦文、张超、王福生)
Author(s):
LI Jing ZHOU Ming-ju ZHANG He-qian SONG Jin-wen ZHANG Chao* WANG Fu-sheng*
Department of Clinical Medicine, Bengbu Medical College, 233000, China
关键词:
CD4+ 细胞毒性T 细胞人类免疫缺陷病毒公共T 细胞受体细胞免疫治疗
Keywords:
CD4+ cytotoxic T cells HIV public T-cell receptor cellular immunotherapy
分类号:
R392.12;R512.91
DOI:
10.3969/j.issn.1007-8134.2018.06.005
文献标识码:
A
摘要:
区别于经典的CD4+ Th,CD4+ 细胞毒性T 细胞(CD4+ cytotoxic T cells, CD4 CTLs)能够通过II 类人类白细胞 抗原依赖的方式直接识别和杀伤靶细胞。CD4 CTLs 广泛参与机体抗感染、抗肿瘤和移植排斥等过程。近年来随着单细胞组 学技术的发展,对CD4 CTLs 的来源、分化、效应机制及在疾病中的作用有了更为深入的认识。本文围绕CD4 CTLs 的免疫 学特点和在HIV 感染中的作用研究进展进行综述,并探讨CD4 CTLs 在HIV 功能性治愈中的潜在应用。
Abstract:
CD4+ cytotoxic T cells (CD4 CTLs), unlike classical CD4 helper T cells, can directly recognize and kill target cells in a human leucocyte antigen-II-dependent manner. CD4 CTLs are extensively involved in anti-infection, anti-tumor and transplant rejection. With the recent applications of single-cell approaches, we have a more comprehensive understanding of the origin, differentiation, effect mechanism and role of CD4 CTLs in various diseases. This review summarizes the progress in the immunological characteristics of CD4 CTLs and their function during HIV infection. Furthermore, we highlight the potential applications of CD4 CTLs in the avenue to an HIV functional cure.      

参考文献/References


[1] Wagner H, Gotze D, Ptschelinzew L, et al. Induction of cytotoxic T lymphocytes against I-region-coded determinants: in vitro evidence for a third histocompatibility locus in the mouse[J]. J Exp Med, 1975, 142(6):1477-1487.
[2] Takeuchi A, Saito T. CD4 CTL, a cytotoxic subset of CD4+ T cells, their differentiation and function[J]. Front Immunol, 2017, 8:194.
[3] Xie Y, Akpinarli A, Maris C, et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma[J]. J Exp Med, 2010, 207(3):651-667.
[4] Quezada SA, Simpson TR, Peggs KS, et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts[J]. J Exp Med, 2010, 207(3):637-650.
[5] Van De Berg PJ, Van Leeuwen EM, Ten Berge IJ, et al. Cytotoxic human CD4+ T cells[J]. Curr Opin Immunol, 2008, 20(3):339- 343.
[6] Thewissen M, Somers V, Hellings N, et al. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation[J]. J Immunol, 2007, 179(10):6514-6523.
[7] Juno JA, Van Bockel D, Kent SJ, et al. Cytotoxic CD4 T cellsfriend or foe during viral infection?[J]. Front Immunol, 2017, 8:19.
[8] Cheroutre H, Husain MM. CD4 CTL: living up to the challenge[J]. Semin Immunol, 2013, 25(4):273-281.
[9] Sakaguchi S, Hombauer M, Bilic I, et al. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes[J]. Nat Immunol, 2010, 11(5):442-448.
[10] Takeuchi A, Badr Mel S, Miyauchi K, et al. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage[J]. J Exp Med, 2016, 213(1):123-138.
[11] Brown DM, Kamperschroer C, Dilzer AM, et al. IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells[J]. Cell Immunol, 2009, 257(1-2):69-79.
[12] Sujino T, London M, Hoytema Van Konijnenburg DP, et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation[J]. Science, 2016, 352(6293):1581-1586.
[13] Patil VS, Madrigal A, Schmiedel BJ, et al. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis[J]. Sci Immunol, 2018, 3(19):eaan8664.
[14] Brown DM. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy[J]. Cell Immunol, 2010, 262(2):89-95.
[15] Braun MY, Lowin B, French L, et al. Cytotoxic T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versushost disease[J]. J Exp Med, 1996, 183(2):657-661.
[16] Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells[J]. J Immunol, 1998, 161(5):2195-2200.
[17] Ohminami H, Yasukawa M, Kaneko S, et al. Fas-independent and nonapoptotic cytotoxicity mediated by a human CD4+ T-cell clone directed against an acute myelogenous leukemia-associated DEKCAN fusion peptide[J]. Blood, 1999, 93(3):925-935.
[18] Davenport MP, Petravic J. CD8+ T cell control of HIV--a known unknown[J]. PLoS Pathog, 2010, 6(1):e1000728.
[19] Streeck H, Li B, Poon AF, et al. Immune-driven recombination and loss of control after HIV superinfection[J]. J Exp Med, 2008, 205(8):1789-1796.
[20] Gainey MD, Rivenbark JG, Cho H, et al. Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming[J]. Proc Natl Acad Sci U S A, 2012, 109(47):e3260-e3267.
[21] Buggert M, Nguyen S, Mclane LM, et al. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease[J]. PLoS Pathog, 2018, 14(4):e1006973.
[22] Soghoian DZ, Streeck H. Cytolytic CD4+ T cells in viral immunity [J]. Expert Rev Vaccines, 2010, 9(12):1453-1463.
[23] Jones RB, Yue FY, Gu XX, et al. Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations[J]. J Virol, 2009, 83(17):8722-8732.
[24] Chevalier MF, Julg B, Pyo A, et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function[J]. J Virol, 2011, 85(2):733-741.
[25] Harari A, Petitpierre S, Vallelian F, et al. Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease:changes after antiretroviral therapy[J]. Blood, 2004, 103(3):966-972.
[26] Phetsouphanh C, Pillai S, Zaunders JJ. Editorial: cytotoxic CD4+ T cells in viral infections[J]. Front Immunol, 2017, 8:1729.
[27] Soghoian DZ, Jessen H, Flanders M, et al. HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome[J]. Sci Transl Med, 2012, 4(123):123ra25.
[28] Johnson S, Eller M, Teigler JE, et al. Cooperativity of HIV-specific cytolytic CD4 T cells and CD8 T cells in control of HIV viremia[J]. J Virol, 2015, 89(15):7494-7505.
[29] Appay V, Zaunders JJ, Papagno L, et al. Characterization of CD4+ CTLs ex vivo[J]. J Immunol, 2002, 168(11):5954-5958.
[30] Von Gegerfelt A, Valentin A, Alicea C, et al. Emergence of simian immunodeficiency virus-specific cytotoxic CD4+ T cells and increased humoral responses correlate with control of rebounding viremia in CD8-depleted macaques infected with rev-independent live-attenuated simian immunodeficiency virus[J]. J Immunol, 2010, 185(6):3348-3358.
[31] Sacha JB, Giraldo-Vela JP, Buechler MB, et al. Gag- and Nefspecific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection[J]. Proc Natl Acad Sci U S A, 2009, 106(24):9791-9796.
[32] Ko?mrlj A, Read EL, Qi Y, et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection[J]. Nature, 2010, 465(7296):350.
[33] Benati D, Galperin M, Lambotte O, et al. Public T cell receptors confer high-avidity CD4 responses to HIV controllers[J]. J Clin Invest, 2016, 126(6):2093-2108.
[34] Galperin M, Farenc C, Mukhopadhyay M, et al. CD4+ T cellmediated HLA class II cross-restriction in HIV controllers[J]. Sci Immunol, 2018, 3(24):eaat0687.
[35] Chachage M, Pollakis G, Kuffour EO, et al. CD25+ FoxP3+ memory CD4 T cells are frequent targets of HIV infection in vivo[J]. J Virol, 2016, 90(20):8954-8967.
[36] Muraro E, Merlo A, Martorelli D, et al. Fighting viral infections and virus-driven tumors with cytotoxic CD4+ T Cells[J]. Front Immunol, 2017, 8:197.
[37] Terahara K, Ishii H, Nomura T, et al. Vaccine-induced CD107a+ CD4+ T cells are resistant to depletion following AIDS virus infection[J]. J Virol, 2014, 88(24):14232-14240.
[38] Laforge M, Silvestre R, Rodrigues V, et al. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques[J]. J Clin Invest, 2018, 128(4):1627-1640.
[39] Estes JD, Kityo C, Ssali F, et al. Defining total-body AIDS-virus burden with implications for curative strategies[J]. Nat Med, 2017, 23(11):1271-1276.
[40] Wolint P, Betts MR, Koup RA, et al. Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells[J]. J Exp Med, 2004, 199(7):925-936.
[41] Zaunders JJ, Dyer WB, Wang B, et al. Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection[J]. Blood, 2004, 103(6):2238-2247.
[42] Zheng N, Fujiwara M, Ueno T, et al. Strong ability of Nef-specific CD4+ cytotoxic T cells to suppress human immunodeficiency virus type 1 (HIV-1) replication in HIV-1-infected CD4+ T cells and macrophages[J]. J Virol, 2009, 83(15):7668-7677.
[43] Norris PJ, Moffett HF, Yang OO, et al. Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4+ T cells[J]. J Virol, 2004, 78(16):8844-8851.
[44] Munier CML, van Bockel D, Bailey M, et al. The primary immune response to vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype[J]. Vaccine, 2016, 34(44):5251-5261.
[45] Zaunders JJ, Munier ML, Kaufmann DE, et al. Early proliferation of CCR5+ CD38+++ antigen-specific CD4+ Th1 effector cells during primary HIV-1 infection[J]. Blood, 2005, 106(5):1660-1667.

备注/Memo

备注/Memo:
[ 基金项目] “十三五”国家传染病重大专项(20182X10302104-002)
[ 作者单位] 233000,蚌埠医学院临床医学系(李静、王福生); 100039 北京,中国人民解放军总医院第五医学中心感染性疾病诊 疗与研究中心(周明菊、张和倩、宋锦文、张超、王福生)
[ 通信作者] 张超,E-mail: zhangch302@163.com;王福生,E-mail: fswang302@163.com
更新日期/Last Update: 2018-12-30