|本期目录/Table of Contents|

[1]何占娣,刘迎娣.MicroRNA 在非酒精性 脂肪性肝病发病过程中作用的研究进展[J].传染病信息,2019,04:374-378.
 HE Zhan-di,LIU Ying-di*.Progress of microRNA in the development of non-alcoholic fatty liver disease[J].Infectious Disease Information,2019,04:374-378.
点击复制

MicroRNA 在非酒精性 脂肪性肝病发病过程中作用的研究进展(PDF)

《传染病信息》[ISSN:1007-8134/CN:11-3886/R]

期数:
2019年04期
页码:
374-378
栏目:
综述
出版日期:
2019-09-12

文章信息/Info

Title:
Progress of microRNA in the development of non-alcoholic fatty liver disease
文章编号:
1007-8134(2019)04-0374-06
作者:
何占娣刘迎娣
100853 北京,中国人民解放军总医院第一医学中心消化科(何占娣、刘迎娣)
Author(s):
HE Zhan-di LIU Ying-di*
Department of Gastroenterology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
*Corresponding author, E-mail: liuyingdi301@sina.com
关键词:
 非编码RNA非酒精性脂肪性肝病致病机制纤维化
Keywords:
non-coding RNA non-alcoholic fatty liver disease pathogenesis fibrosis
分类号:
R575
DOI:
10.3969/j.issn.1007-8134.2019.04.024
文献标识码:
A
摘要:
微小RNA(microRNA, miRNA)是一种小的非编码RNA,参与机体的生理和病理反应。非酒精性脂肪性肝病 (non-alcoholic fatty liver disease, NAFLD)是以弥漫性肝细胞大泡性脂肪变性为主要特征的临床病理综合征。近年来,有报 道称miRNA 在肝脏炎症、纤维化和硬化中发挥了一定的作用,尤其是在NAFLD 发生发展过程中,miRNA 表达特点、致病 机制、临床诊治中的意义等方面引起了较大关注,故本文对此进行综述。  
Abstract:
MicroRNA is small non-coding RNA that participates in physiological and pathological reactions in human body. Non-alcoholic fatty liver disease (NAFLD) refers to the clinical pathological syndrome mainly characterized by diffuse bulbous steatosis of hepatocytes. Recently, it has been reported that microRNA plays a certain role in liver inflammation, fibrosis and sclerosis, especially in the development of NAFLD. It has attracted considerable attention in the aspects of microRNA expression characteristics, pathogenesis, significance in clinical diagnosis and treatment of NAFLD. Therefore, this article reviews those recent advances.     

参考文献/References


[1] Loomba R, Sanyal AJ. The global NAFLD epidemic[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11):686-690.
[2] Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association[J]. Hepatology, 2012, 55:2005- 2023.
[3] Silwal P, Kim YS, Jo EK, et al. The roles of microRNAs in regulation of autophagy during bacterial infection[J]. Semin Cell Dev Biol, 2019.
[4] Gjorgjieva M, Sobolewski C, Dolicka D, et al. miRNAs and NAFLD: from pathophysiology to therapy[J]. Gut, 2019.
[5] Ao R, Wang Y, Tong J, et al. Altered microRNA-9 expression level is directly correlated with pathogenesis of nonalcoholic fatty liver disease by targeting Onecut2 and SIRT1[J]. Med Sci Monit, 2016, 22:3804-3819.
[6] Du J, Niu X, Wang Y, et al. MiRNA-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a [J]. Sci Rep, 2015, 5:16163.
[7] Cermelli S, Ruggieri A, Marrero JA, et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease[J]. PLoS One, 2011, 6(8):e23937.
[8] Leti F, Malenica I, Doshi M, et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis[J]. Transl Res, 2015, 166(3):304-314.
[9] Pirola CJ, Fernandez Gianotti T, Castano GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis [J]. Gut, 2015, 64(5):800-812.
[10] Rodrigues PM, Afonso MB, Simao AL, et al. miRNA-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice [J]. Cell Death Dis, 2017, 8(4):e2748.
[11] Braza-Boils A, Mari-Alexandre J, Molina P, et al. Deregulated hepatic microRNAs underlie the association between non-alcoholic fatty liver disease and coronary artery disease[J]. Liver Int, 2016, 36(8):1221-1229.
[12] Tan Y, Ge G, Pan T, et al. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease[J]. PLoS One, 2014, 9(8):e105192.
[13] Latorre J, Moreno-Navarrete JM, Mercader JM, et al. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD[J]. Int J Obes (Lond), 2017, 41(4):620-630.
[14] Zarrinpar A, Gupta S, Maurya MR, et al. Serum microRNAs explain discordance of non-alcoholic fatty liver disease in monozygotic and dizygotic twins: a prospective study[J]. Gut, 2016, 65(9):1546- 1554.
[15] Vega-Badillo J, Gutierrez-Vidal R, Hernandez-Perez HA, et al. Hepatic miRNA-33a/miRNA-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects[J]. Liver Int, 2016, 36:1383-1391.
[16] Celikbilek M, Baskol M, Taheri S, et al. Circulating microRNAs in patients with non-alcoholic fatty liver disease[J]. World J Hepatol, 2014, 6(8):613-620.
[17] Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature, 2011, 474(4):649- 653.
[18] Soronen J, Yki-Jarvinen H, Zhou Y, et al. Novel hepatic microRNAs upregulated in human nonalcoholic fatty liver disease [J]. Physiol Rep, 2016, 4(1):pii:e12661.
[19] Povero D, Eguchi A, Li H, et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease[J]. PLoS One, 2014, 9(12):e113651.
[20] Jiang W, Liu J, Dai Y, et al. MiRNA-146b attenuates highfat diet-induced non-alcoholic steatohepatitis in mice[J]. J Gastroenterol Hepatol, 2015, 30(5):933-943.
[21] Feng YY, Xu XQ, Ji CB, et al. Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease[J]. Cell Physiol Biochem, 2014, 34(6):1983-1997.
[22] Wang L, Zhang N, Wang Z, et al. Decreased miRNA-155 level in the peripheral blood of non-alcoholic fatty liver disease patients may serve as a biomarker and may influence LXR activity[J]. Cell Physiol Biochem, 2016, 39(6):2239-2248.
[23] Li B, Zhang Z, Zhang H, et al. Aberrant miR199a-5p/caveolin1/ PPARalpha axis in hepatic steatosis[J]. J Mol Endocrinol, 2014, 53:393-403.
[24] Jin X, Chen YP, Kong M, et al. Transition from hepatic steatosis to steatohepatitis: unique microRNA patterns and potential downstream functions and pathways[J]. J Gastroenterol Hepatol, 2012, 27(2):331-340.
[25] Lendvai G, Jarmay K, Karacsony G, et al. Elevated miR-33a and miR-224 in steatotic chronic hepatitis C liver biopsies[J]. World J Gastroenterol, 2014, 20(41):15343-15350.
[26] Shpyleva S, Pogribna M, Cozart C, et al. Interstrain differences in the progression of nonalcoholic steatohepatitis to fibrosis in mice are associated with altered hepatic iron metabolism[J]. J Nutr Biochem, 2014, 25(12):1235-1242.
[27] Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR- 451) and non-alcoholic fatty liver[J]. Clin Chim Acta, 2013, 424:99-103.
[28] Hur W, Lee JH, Kim SW, et al. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/AKT pathway[J]. Int J Biochem Cell Biol, 2015, 64:265-276.
[29] Videla LA, Rodrigo R, Araya J, et al. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease[J]. Trends Mol Med, 2006, 12(12):555-558.
[30] Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5):1836-1846.
[31] Wu T, Liu YH, Fu YC, et al. Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients[J]. Ann Clin Lab Sci, 2014, 44(4):410-418.
[32] Deng XG, Qiu RL, Wu YH, et al. Overexpression of miRNA-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miRNA-122/FoxA1/HNF4a-positive feedback loop[J]. Liver Int, 2014, 34(2):281-295.
[33] Salvoza NC, Klinzing DC, Gopez-Cervantes J, et al. Association of circulating serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease[J]. PLoS One, 2016, 11(4):e0153497.
[34] Esau C, Davis S, Murray SF, et al. miRNA-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab, 2006, 3(2):87-98.
[35] Li J, Ghazwani M, Zhang Y, et al. miRNA-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression[J]. J Hepatol, 2013, 58(3):522-528.
[36] Virtue A, Johnson C, Lopez-Pastrana J, et al. MicroRNA-155 deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity, and non-alcoholic fatty liver disease: a novel mouse model of obesity paradox[J]. J Biol Chem, 2017, 292(4):1267-1287.
[37] Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis[J]. PLoS One, 2015,10(6):e0129251.
[38] Miller AM, Gilchrist DS, Nijjar J, et al. MiRNA-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice[J]. PLoS One, 2013, 8(8):e72324.
[39] Yamada H, Ohashi K, Suzuki K, et al. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease[J]. Clin Chim Acta, 2015, 446:267-271.
[40] Tryndyak VP, Latendresse JR, Montgomery B, et al. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a cholineand folate-deficient diet[J]. Toxicol Appl Pharmacol, 2012, 262(1):52-59.
[41] Vienberg S, Geiger J, Madsen S, et al. MicroRNAs in metabolism Acta physiologica[J]. Oxford, England 2017, 219:346-361.
[42] Guo XY, Sun F, Chen JN, et al. CircRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol, 2018, 24(3):323-337.
[43] Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3):203-222.
[44] Wu GY, Rui C, Chen JQ, et al. MicroRNA-122 inhibits lipid droplet formation and hepatic triglyceride accumulation via Yin Yang 1[J]. Cell Physiol Biochem, 2017, 44(4):1651-1664.
[45] Su Q, Kumar V, Sud N, et al. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosi[s J]. Adv Drug Deliv Rev, 2018, 129:54-63.
[46] Du WW, Liu F, Shan SW, et al. Inhibition of dexamethasoneinduced fatty liver development by reducing miRNA-17-5p levels [J]. Mol Ther, 2015, 23(7):1222-1233.

备注/Memo

备注/Memo:

[ 通信作者] 刘迎娣,E-mail: liuyingdi301@sina.com
更新日期/Last Update: 2019-09-15