|本期目录/Table of Contents|

[1]郑晓文,王 敏,冯成千,等.HBV 小鼠动物模型的研发进展[J].传染病信息,2019,05:451-455.
 ZHENG Xiao-wen,WANG Min,FENG Cheng-qian,et al.Research progress of HBV mouse models[J].Infectious Disease Information,2019,05:451-455.
点击复制

HBV 小鼠动物模型的研发进展(PDF)

《传染病信息》[ISSN:1007-8134/CN:11-3886/R]

期数:
2019年05期
页码:
451-455
栏目:
综述
出版日期:
2019-11-13

文章信息/Info

Title:
Research progress of HBV mouse models
文章编号:
1007-8134(2019)05-0451-06
作者:
郑晓文王 敏冯成千高 鸣聂 源邓西子胡凤玉李 锋
 510060,广州医科大学附属广州市第八人民医院研究所(郑晓文、王敏、冯成千、高鸣、聂源、邓西子、胡凤玉、李锋)
Author(s):
ZHENG Xiao-wen WANG Min FENG Cheng-qian GAO Ming NIE Yuan DENG Xi-zi HU Feng-yu LI Feng*
Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, 510060, China
关键词:
乙型肝炎病毒动物模型小鼠
Keywords:
hepatitis B virus animal model mouse
分类号:
R-332;R373.21
DOI:
10.3969/j.issn.1007-8134.2019.05.018
文献标识码:
A
摘要:
HBV是导致肝硬化和肝细胞癌的主要原因。目前全球约有 2.4亿 HBV感染者,其中每年约 100万人死于 HBV所引起的肝脏疾病,是全球主要的公共卫生问题之一。然而 HBV是宿主种属特异性极强的嗜肝病毒,只能在几种特定的动物中感染复制。因此,研究支持 HBV感染的动物模型,对 HBV感染和致病机制的认识,以及有效治疗方案的快速研发具有重要的作用。当前, HBV感染模型的不断升级有力推动了 HBV的病毒学研究,特别是 HBV小鼠模型的不断开发为 HBV研究提供了便捷的研究工具,本文将对这一领域的研究作一综述。
Abstract:
HBV is the leading cause of cirrhosis and hepatocellular carcinoma. At present about 240 million people are infected with HBV in the world, and nearly 1 million people die annually from HBV related liver diseases, therefore HBV is one of major global public health problems. As a hepatotropic virus, HBV has an extremely specific host range and can be replicated in several specificanimals. For a long time, animal models supporting HBV infection play a crucial role on the understanding of pathogenic mechanism and rapid development of effective treatment options for HBV infection. The gradual improvement of HBV mouse models has greatly furtheredour understanding of HBV virology and provided useful tools for studying HBV. This paper updates the progress in the field.

参考文献/References

[1] Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis[J]. Annu Rev Pathol, 2006, 1:23-61.
[2] Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection[J]. Science, 1999, 284(5415):825-829.
[3] Dupinay T, Gheit T, Roques P, et al. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among macaca fascicularis from Mauritius Island[J]. Hepatology, 2013, 58(5):1610-1620.
[4] Yan RQ, Su JJ, Huang DR, et al. Human hepatitis B virus and hepatocellular carcinoma. II. Experimental induction of hepatocellular carcinoma in tree shrews exposed to hepatitis B virus and aflatoxin B1[J]. J Cancer Res Clin Oncol, 1996, 122(5):289-295.
[5] Brezillon N, Kremsdorf D, Weiss MC. Cell therapy for the diseased liver: from stem cell biology to novel models for hepatotropic human pathogens[J]. Dis Model Mech, 2008, 1(2-3):113-130.
[6] Guidotti LG, Matzke B, Schaller H, et al. High-level hepatitis B virus replication in transgenic mice[J]. J Virol, 1995, 69(10):6158-6169.
[7] Larkin J, Clayton M, Sun B, et al. Hepatitis B virus transgenic mouse model of chronic liver disease[J]. Nat Med, 1999, 5(8):907-912.
[8] Wang J, Zhao W, Cheng L, et al. CD137-mediated pathogenesis from chronic hepatitis to hepatocellular carcinoma in hepatitis B virus-transgenic mice[J]. J Immunol, 2010, 185(12):7654- 7662.
[9] Nosaka T, Naito T, Hiramatsu K, et al. Gene expression profiling of hepatocarcinogenesis in a mouse model of chronic hepatitis B[J]. PLoS One, 2017, 12(10):e185442.
[10] McFadden VC, Shalaby RE, Iram S, et al. Hepatic deficiency of the pioneer transcription factor FoxA restricts hepatitis B virus biosynthesis by the developmental regulation of viral DNA methylation[J]. PLoS Pathog, 2017, 13(2):e1006239.
[11] Bandi P, Garcia ML, Booth CJ, et al. Bortezomib inhibits hepatitis B virus replication in transgenic mice[J]. Antimicrob Agents Chemother, 2010, 54(2):749-756.
[12] Garcia ML, Byfield R, Robek MD. Hepatitis B virus replication and release are independent of core lysine ubiquitination[J]. J Virol, 2009, 83(10):4923-4933.
[13] Moriyama T, Guilhot S, Klopchin K, et al. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice[J]. Science, 1990, 248(4953):361-364.
[14] Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA[J]. Hum Gene Ther, 1999, 10(10):1735-1737.
[15] Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA[J]. Gene Ther, 1999, 6(7):1258-1266.
[16] Lin YJ, Wu HL, Chen DS, et al. Hepatitis B virus nucleocapsid but not free core antigen controls viral clearance in mice[J]. J Virol, 2012, 86(17):9266-9273.
[17] Yang PL, Althage A, Chung J, et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection[J]. Proc Natl Acad Sci U S A, 2002, 99(21):13825-13830.
[18] Huang LR, Wu HL, Chen PJ, et al. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection [J]. Proc Natl Acad Sci U S A, 2006, 103(47):17862-17867.
[19] Xie Q, Bu W, Bhatia S, et al. The atomic structure of adenoassociated virus (AAV-2), a vector for human gene therapy[J]. Proc Natl Acad Sci U S A, 2002, 99(16):10405-10410.
[20] Koczot FJ, Carter BJ, Garon CF, et al. Self-complementarity of terminal sequences within plus or minus strands of adenovirusassociated virus DNA[J]. Proc Natl Acad Sci U S A, 1973, 70(1):215-219.
[21] Goncalves MA. Adeno-associated virus: from defective virus to effective vector[J]. Virol J, 2005, 2:43.
[22] 赵丽琴,席斌,彭华松. 腺相关病毒(AAV)载体研究进展[J]. 生物技术进展,2012,2(2):110-115.
[23] Collaco RF, Cao X, Trempe JP. A helper virus-free packaging system for recombinant adeno-associated virus vectors[J]. Gene, 1999, 238(2):397-405.
[24] Dion S, Bourgine M, Godon O, et al. Adeno-associated virusmediated gene transfer leads to persistent hepatitis B virus replication in mice expressing HLA-A2 and HLA-DR1 molecules [J]. J Virol, 2013, 87(10):5554-5563.
[25] Yang D, Liu L, Zhu D, et al. A mouse model for HBV immunotolerance and immunotherapy[J]. Cell Mol Immunol, 2014, 11(1):71-78.
[26] Zhu D, Liu L, Yang D, et al. Clearing persistent extracellular antigen of hepatitis B virus: an immunomodulatory strategy to reverse tolerance for an effective therapeutic vaccination[J]. Immunol, 2016, 196(7):3079-3087.
[27] Bian Y, Zhang Z, Sun Z, et al. Vaccines targeting preS1 domain overcome immune tolerance in hepatitis B virus carrier mice[J]. Hepatology, 2017, 66(4):1067-1082.
[28] Qi Z, Li G, Hu H, et al. Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral persistence in immunocompetent mice[J]. J Virol, 2014, 88(14):8045-8056.
[29] Li F, Cheng L, Murphy CM, et al. Minicircle HBV cccDNA with a Gaussia luciferase reporter for investigating HBV cccDNA biology and developing cccDNA-targeting drugs[J]. Sci Rep, 2016, 6:36483.
[30] Yan Z, Zeng J, Yu Y, et al. HBVcircle: a novel tool to investigate hepatitis B virus covalently closed circular DNA[J]. J Hepatol, 2017, 66(6):1149-1157.
[31] Li G, Zhu Y, Shao D, et al. Recombinant covalently closed circular DNA of hepatitis B virus induces long-term viral persistence with chronic hepatitis in a mouse model[J]. Hepatology, 2018, 67(1):56-70.
[32] Ilan E, Burakova T, Dagan S, et al. The hepatitis B virus-trimera mouse: a model for human HBV infection and evaluation of anti- HBV therapeutic agents[J]. Hepatology, 1999, 29(2):553-562.
[33] Dandri M, Burda MR, Torok E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus [J]. Hepatology, 2001, 33(4):981-988.
[34] Mercer DF, Schiller DE, Elliott JF, et al. Hepatitis C virus replication in mice with chimeric human livers[J]. Nat Med, 2001, 7(8):927-933.
[35] Meuleman P, Libbrecht L, De Vos R, et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera[J]. Hepatology, 2005, 41(4):847-856.
[36] Bissig KD, Le TT, Woods NB, et al. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal mode[l J]. Proc Natl Acad Sci U S A, 2007, 104(51):20507-20511.
[37] Lindstedt S, Holme E, Lock EA, et al. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase[J]. Lancet, 1992, 340(8823):813-817.
[38] Overturf K, Al-Dhalimy M, Tanguay R, et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I[J]. Nat Genet, 1996, 12(3):266-273.
[39] Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice[J]. Nat Biotechnol, 2007, 25(8):903-910.
[40] Bissig KD, Wielang SF, Tran P, et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment [J]. Clin Invest, 2010, 120(3):924-930.
[41] . Feng L, Dale OC, Debra B, et al. Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology[J]. Sci Rep, 2014, 4:5290.
[42] Li F, Nio K, Yasui F, et al. Studying HBV infection and therapy in immune deficient NOD-Rag1-/-IL2RgammaC-null (NRG) fumarylacetoacetate hydrolase (Fah) knockout mice transplanted with human hepatocyte[J]. Methods Mol Biol, 2017, 1540:267- 276.
[43] Hasegawa M, Kawai K, Mitsui T, et al. There constituted ‘humanized liver’ in TK-NOG mice is mature and functional[J]. Biochem Biophys Res Commun, 2011, 405(3):405-410.
[44] 傅忠星,杨帆,王灵,等. 人嵌合肝小鼠模型的建立及在 HBV 致病研究中的应用[J]. 传染病信息,2017,30(2):75- 81.
[45] Sun S, Li J. Humanized chimeric mouse models of hepatitis B virus infection[J]. Int J Infect Dis, 2017, 59:131-136.

备注/Memo

备注/Memo:
[基金项目]国家自然科学基金(81670536)
[作者单位]510060,广州医科大学附属广州市第八人民医院研究所(郑晓文、王敏、冯成千、高鸣、聂源、邓西子、胡凤玉、李锋)
[通信作者]李锋,E-mail:fengli_unc@163.com
*Correspondingauthor,E-mail:fengli_unc@163.com
更新日期/Last Update: 2019-11-13